## **Course Outline**



Title: EXPERIMENTAL DESIGN & ANALYSIS

Code: STATS2100

Formerly: MS601

Faculty / Portfolio: Faculty of Science

## **Program Level:**

|              | AQF Level of Program |   |   |   |   |    |  |
|--------------|----------------------|---|---|---|---|----|--|
|              | 5                    | 6 | 7 | 8 | 9 | 10 |  |
| Level        |                      |   |   |   |   |    |  |
| Introductory |                      |   |   |   |   |    |  |
| Intermediate |                      |   | ~ |   |   |    |  |
| Advanced     |                      |   |   |   |   |    |  |

**Pre-requisites:** (MS501 or STATS1000)

Co-requisites: Nil

**Exclusions:** (MS601)

**Progress Units:** 15

**ASCED Code:** 010103

## **Learning Outcomes:**

### Knowledge:

- **K1.** describe the concepts of experimental design, determine the design used in a particular practical situation, and identify the factors relevant to the situation;
- **K2.** choose appropriate experimental design techniques in context of the problem;
- **K3.** identify, analyse and report on a selection of advanced experimental designs;
- **K4.** describe the concept of power in relation to experimental design, and perform power calculations for simple designs:
- **K5.** interpret the results and computer output from all of the above designs and present clear, orderly and informative statistical summaries and technical reports.

## Skills:

- **S1.** use technology to perform analysis of variance, including estimation of contrasts, planned and post hoc comparisons;
- **S2.** perform formal statistical analysis of data from a variety of disciplines;
- **S3.** use technology to generate and then interpret computer output and communicate statistical results and conclusions.

#### Application of knowledge and skills:

**A1.** build and apply experimental designs for the real-world problems.

## **Course Outline**

#### STATS2100 EXPERIMENTAL DESIGN & ANALYSIS

#### **Values and Graduate Attributes:**

#### Values:

- **V1.** appreciate the need for appropriate design of experiments for use in a practical situation:
- **V2.** be aware of the role of power analysis in relationship to experimental design;
- **V3.** appreciate the need to produce clear, orderly and informative statistical summaries and technical reports.

## **Graduate Attributes:**

| Attribute             | Brief Description                                                       | Focus  |
|-----------------------|-------------------------------------------------------------------------|--------|
| Continuous Learning   | Students will be able to develop an understanding of concepts and       | Medium |
|                       | methodologies of experimental design, and apply these concepts and      |        |
|                       | understandings to real-world problems in their disciplines.             |        |
|                       |                                                                         |        |
| Self Reliance         | Self reliance will be demonstrated through utilisation of extra         | Medium |
|                       | resources in the course such as reading reference notes, completion     |        |
|                       | of laboratory and tutorials, and timely completion of assessment tasks. |        |
| Engaged Citizenship   |                                                                         |        |
| Social Responsibility | Students will be able to appreciate the role and appropriate use of     | Low    |
|                       | experimental design to solve the real-world problems.                   |        |

#### Content:

## Topics may include:

- one-way ANOVA with multiple comparisons and planned and post hoc comparisons;
- factorial designs and interactions;
- power analysis;
- fixed and random effects models;
- balanced incomplete block designs;
- latin squares and split plot designs;
- hierarchical (nested) designs;
- repeated measures designs.

#### **Assessment:**

| Learning Outcomes Assessed | Assessment Task                          | Assessment Type             | Weighting |
|----------------------------|------------------------------------------|-----------------------------|-----------|
| K1-K5; S1-S3; A1           | Practical use of appropriate statistical | Weekly laboratory exercises | 0 - 10%   |
|                            | packages, and interpretation of output.  |                             |           |
| K1-K5; S1-S3; A1           | Read, research and apply various aspects | Assignments                 | 40 - 50%  |
|                            | of experimental designs.                 |                             |           |
| K1-K5; S1-S3; A1           | Attend lectures, read and summarise      | Examination(s)              | 50 - 60%  |
|                            | theoretical aspects of the unit          |                             |           |

## **Adopted Reference Style:**

**APA** 

# **Course Outline**

STATS2100 EXPERIMENTAL DESIGN & ANALYSIS

## **Presentation of Academic Work:**

https://federation.edu.au/students/assistance-support-and-services/academic-support/general-guide-for-the-presentation-of-academic-work